1.发动机的工作原理是什么

2.简述四冲程汽油机工作过程?

3.汽车行驶原理

4.四冲程汽油机的工作原理是什么?

汽油机工作原理_汽油机工作的四个冲程

四冲程发动机的工作原理图

第一个冲程-进气冲程:

在进气冲程,曲轴带动活塞由上止点向下止点运动,进气门打开,汽油和空气的混合气被吸入气缸,当活塞到达下止点,进气冲程结束。

发动机进气冲程工作原理图

早期汽油机提供汽油和空气的混合的装置是化油器,今天,你在汽车上已经很难看到化油器了。现在广泛用的是电子控制燃油喷射系统。

汽油机吸入气缸的是汽油和空气的混合气,早期的化油器提供

电喷系统在进气歧管设计喷油器,喷油器相当于于一个电磁控制的开关,当控制喷油器内的电磁线圈通电打开时,喷油器打开喷油;当控制切断喷油器内的电磁线圈电流时,喷油器关闭。电子控制单元可以自由精确的控制喷油量。

喷油器直接将燃油喷入进气管形成混合气

第二个冲程-压缩冲程:

发动机压缩冲程

在进气气冲程结束后,活塞已经到达下止点,此时气缸内已充注汽油和空气的混合气。 曲轴继续带动活塞由下止点向上止点运动,进气门和排气门均关闭,混合气被压缩,压力和温度升高,至活塞到达上止点,?压缩冲程结束。?

第三个冲程-作功冲程:

发动机作功冲程

压缩冲程即将结束,活塞到达上止点前的某一刻,点火系统提供的高压电作用于火花塞,火花塞跳火,点燃气缸的混合气,因为活塞的运行速度极快而迅速的越过上止点,同时混合气迅速燃烧膨胀作功,推动活塞下行,带动曲轴输出动力,到达下止点,作功冲程结束。

第四个冲程-排气冲程:

发动机排气冲程

作功冲程结束后,活塞到达下止点,曲轴带动活塞由下止点向上止点运动,此时排气门要打开,燃烧后的废气经排气门排出。排气结束,活塞处于上止点,开始下一个进气冲程。

将发动机完成进气、压缩、作功、排气称为一个工作循环,完成这一个工作循环需要四个冲程,曲轴转两圈,所以称为四冲程发动机。为了完成这一工作循环,需要有配气机构配合实现气门的定时打开和关闭。对于汽油机来说,需要有燃油供给系统供给一定浓度的汽油和空气的混合气。点火系统产生高压电作用于火花塞,在 适当的时候点燃气缸内的混合气。

发动机的工作原理是什么

四冲程汽油机的工作过程是一个复杂的过程,它由进气、压缩、燃烧膨胀、排气四个行程(冲程)组成。

1、进气行程。

活塞被曲轴带动由上止点向下上止点移动,同时,进气门开启,排气门关闭。当活塞由上止点向下止点移动时,活塞上方的容积增大,气缸内的气体压力下降,形成一定的真空度。由于进气门开启,气缸与进气管相通,混合气被吸入气缸。当活塞移动到下止点时,气缸内充满了新鲜混合气以及上一个工作循环未排出的废气。

2、压缩行程。

活塞由下止点移动到上止点,进排气门关闭。曲轴在飞轮等惯性力的作用下带动旋转,通过连杆推动活塞向上移动,气缸内气体容积逐渐减小,气体被压缩,气缸内的混合气压力与温度随着升高。

3、作功行程。

此时,进排气门同时关闭,火花塞点火,混合气剧烈燃烧,气缸内的温度、压力急剧上升,高温、高压气体推动活塞向下移动,通过连杆带动曲轴旋转。在发动机工作的四个行程中,只有这个在行程才实现热能转化为机械能,所以,这个行程又称为作功行程。

4、排气行程。

此时,排气门打开,活塞从下止点移动到上止点,废气随着活塞的上行,被排出气缸。由于排气系统有阻力,且燃烧室也占有一定的容积,所以在排气终了地,不可能将废气排净,这部分留下来的废气称为残余废气。残余废气不仅影响充气,对燃烧也有不良影响。

简述四冲程汽油机工作过程?

(1)四冲程汽油机将空气和汽油按一定比例混合,形成汽车发动机的良好混合气。在进气冲程,混合气被吸入气缸,混合气被压缩、点燃、燃烧,产生热能。高温高压气体作用于活塞顶部,推动活塞做直线往复运动,机械能通过连杆、曲轴、飞轮机构向外输出。四冲程汽油发动机在进气冲程、压缩冲程、做功冲程和排气冲程中完成一个工作循环。(2)进气冲程活塞由曲轴驱动,从上止点运动到下止点。此时,进气门开启,排气门关闭,曲轴旋转180°。活塞在运动过程中,气缸的容积逐渐增大,气缸内的气体压力从pr逐渐降低到pa,气缸内形成一定程度的真空。空气和汽油的混合气通过进气门被吸入气缸,并在气缸内进一步混合,形成可燃混合气。由于进气系统的阻力,在进气结束时,气缸内的气体压力小于大气压力p0,即Pa=(0.80~0.90)P0。进入气缸的可燃混合气由于进气管、气缸壁、活塞顶、气门、燃烧室壁等高温部件的加热,以及与残余废气的混合,温度上升到340~400K。(3)压缩冲程在压缩冲程中,进气门和排气门同时关闭。活塞从下止点移动到上止点,曲轴旋转180°。当活塞向上运动时,工作容积逐渐减小,缸内混合物被压缩后压力和温度不断上升。当压缩结束时,压力pc可达800~2000kpa,温度可达600~750k(4)做功冲程当活塞接近上止点时,火花塞点燃可燃混合气,混合气燃烧释放出大量热能,使气缸内气体的压力和温度迅速升高。最高燃烧压力pZ为3000~6000kPa,温度TZ为2200~2800k·k,高压气体推动活塞从上止点运动到下止点,通过曲柄连杆机构向外输出机械能。随着活塞向下移动,气缸的容积增加,气体压力和温度逐渐降低。到达B点时,压力下降到300~500kPa,温度下降到1200~1500KK,在作功冲程中,进气门和排气门关闭,曲轴旋转180°。(5)排气冲程在排气冲程中,排气门打开,进气门仍然关闭,活塞从下止点运动到上止点,曲轴旋转180°。当排气门打开时,燃烧后的废气一方面在气缸内外的压力差下排到气缸外,另一方面通过活塞的挤压作用排到气缸外。由于排气系统的阻力,排气端R的压力略高于大气压,即PR=(1.05~1.20)P0。排气温度TR=900~1100K.当活塞运动到上止点时,燃烧室中仍有一定体积的废气无法排出。这部分废气称为残余废气。

汽车行驶原理

四冲程汽油机的工作原理

1、进气行程在此行程中,活塞由上止点运动到下止点,进气门开启,排气门关闭,曲轴旋转180度。

当活塞由上止点向下止点运动时,气缸内部的压力下降,将汽油和空气的混合气经进气门吸入气缸,由于存在进气阻力,当活塞到达下止点时,气缸内的压力低于大气压。

2、压缩行程中,活塞由下止点运动到上止点,进、排气门均关闭,曲轴旋转180度。当活塞由下止点向上止点运动时,气缸内的混合气温度压力不断上升,使其易于点燃。较大的压缩比有利于提高发动机的动力性和经济性,但压缩比过高,易造成发动机工作不正常。

3、做功行程中,进气门、排气门均关闭,活塞由上止点运动到下止点,曲轴旋转180度。在压缩冲程活塞达到上止点之前,火花塞点燃混合气,在混合气燃烧产生的高压作用下,活塞由上止点被推向下止点而产生动力。气缸内最高瞬间压力可达3到5MPao

4、排气行程中,活塞由下止点运动到上止点,进气门关闭,排气门打开,曲轴旋转180度。

在活塞由下止点向上止点运动时,燃烧的废气被排出。当活塞到达排气上止点时,由于燃烧室容积的存在,气缸内还有少量废气,其压力也因排气阻力而高于大气压。此时,活塞又恢复到进气行程初始状态,这样,发动机气缸完成了一个工作循环。

综上所述,四冲程汽油发动机经过进气、压缩、燃烧做功、排气四个行程,完成一个工作循环。这期间活塞在上、下止点间往复移动了四个行程,相应地曲轴旋转了两周。

扩展资料:

四冲程发动机属于往复活塞式内燃机,根据所用燃料种类的不同,分为汽油机、柴油机和气体燃料发动机三类。以汽油或柴油为燃料的活塞式内燃机分别称作汽油机或柴油机。使用天然气、液化石油气和其他气体燃料的活塞式内燃机称作气体燃料发动机。

汽油和柴油都是石油制品,是汽车发动机的传统燃料。非石油燃料称作代用燃料。燃用代用燃料的发动机称作代用燃料发动机,如乙醇发动机、氢气发动机、甲醇发动机等。

四冲程汽油机经过进气、压缩、作功、排气四个行程完成一个工作循环,在这个过程中,活塞上下往复运动四个行程,相应的曲轴旋转两周。

四冲程柴油机的工作原理与四冲程汽油机相同,也是由进气、压缩、做功、排气四个形成组成。不同的是柴油机进气行程进的是纯空气,在压缩行程接近上止点时,由喷油器将柴油喷入燃烧室,由于这时汽缸内的温度已经远远超过柴油的自燃温度,喷入的柴油经过短暂的着火延迟后,自行着火燃烧,对外做功。

详解

1、吸气冲程

进气阀(L)打开,活塞向下运动,燃油和空气的混合物进入汽缸,当活塞运动至最低时,进气阀关闭

2、压缩冲程

进气阀与排气阀都关闭着,活塞向上运动,燃油和空气的混合气体被压缩,当活塞运动至最顶部时,压缩冲程结束,将机械能转化为内能

3、做功冲程

火花点燃混和气体,燃烧的气体急剧膨胀,推动活塞下行,将内能转化为机械能

4、排气冲程

排气阀(R)打开,活塞向上运动,将燃烧后的废气排出,当活塞运动至最顶部时,排气阀关闭

大部分的四冲程发动机,气门都是简单地随着弹簧的返回而关闭。随着发动机转速的提高,弹簧推动气门开合的时间会有所改变,而这时间的改变不利于发动机的性能发挥。

参考资料:

百度百科——四冲程?百度百科——四冲程发动机

四冲程汽油机的工作原理是什么?

1、汽车发动机的工作原理

汽油机是将空气与汽油以一定的比例混合成良好的混合气,在吸气冲程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。四冲程汽油机在进气冲程、压缩冲程、做功冲程和排气冲程内完成一个工作循环。

2、离合器

离合器位于发动机和变速箱之间的飞轮壳内,用螺钉将离合器总成固定在飞轮的后平面上,离合器的输出轴就是变速箱的输入轴。

在汽车行驶过程中,驾驶员可根据需要踩下或松开离合器踏板,使发动机与变速箱暂时分离和逐渐接合,以切断或传递发动机向变速器输入的动力。离合器是机械传动中的常用部件,可将传动系统随时分离或接合。

3、手动变速箱

手动变速箱称手动变速器(简称MT)又称机械式变速器,即必须用手拨动变速杆(俗称“挡把”)才能改变变速器内的齿轮啮合位置,改变传动比,从而达到变速的目的。

它结构简单,性能可靠,制造和维护成本低廉,且传动效率高(理论上会更省油),另外,由于是纯机械控制,换挡反应快,且可以更直接的表现驾驶者的意愿,因此也更富驾驶乐趣,这些都是手动变速箱的优点。不过相比自动变速箱,它操作繁琐,而且在挡位切换时顿挫明显的劣势也是无法弥补的。

4、差速器

汽车差速器能够使左、右(或前、后)驱动轮实现以不同转速转动的机构。主要由左右半轴齿轮、两个行星齿轮及齿轮架组成。功用是当汽车转弯行驶或在不平路面上行驶时,使左右车轮以不同转速滚动,即保证两侧驱动车轮作纯滚动运动。差速器是为了调整左右轮的转速差而装置的。

5、汽车悬挂系统

汽车悬挂系统就是指由车身与轮胎间的弹簧和避震器组成整个支持系统。悬挂系统应有的功能是支持车身,改善乘坐的感觉,不同的悬挂设置会使驾驶者有不同的驾驶感受。外表看似简单的悬挂系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性。

悬挂系统是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。典型的悬挂系统结构由弹性元件、导向机构以及减震器等组成,个别结构则还有缓冲块、横向稳定杆等。弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬挂系统多用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。

四冲程汽油机的工作原理由4个活塞行程组成,即进气行程、压缩行程、作功行程和排气行程。活塞行程可分别用四个过程命名。进气行程,活塞在曲轴的带动下由上止点移至下止点。此时排气门关闭,进气门开启。在活塞移动过程中,气缸容积逐渐增大,气缸内形成一定的真空度。空气和汽油的混合物通过进气门被吸入气缸,并在气缸内进一步混合形成可燃混合气。压缩行程,进气行程结束后,曲轴继续带动活塞由下止点移至上止点。这时,进、排气门均关闭。随着活塞移动气缸容积不断减小,气缸内的混合气被压缩,其压力和温度同时升高。作功行程,压缩行程结束时,安装在气缸盖上的火花塞产生电火花,将气缸内的可燃混合气点燃,火焰讯速传遍整个燃烧室,同时放出大量的热能。燃烧气体的体积急剧膨胀,压力和温度迅速升高。在气体压力的作用下,活塞由上止点移至下止点,并通过连杆推动曲轴旋转作功。这时,进、排气门仍旧关闭。排气行程,排气行程开始,排气门开启,进气门仍然关闭,曲轴通过连杆带动活塞由下止点移至上止点,此时膨胀过后的燃烧气体(或称废气)在其自身剩余压力和在活塞的推动下,经排气门排出气缸之外。当活塞到达上止点时,排气行程结束,排气门关闭。